전체 글 1902

김성훈 딥러닝 7 - 학습 rate, Overfitting, 일반화

Lec 07-1 학습 rate, Overfitting, 일반화(Regularization) https://www.youtube.com/watch?v=1jPjVoDV_uo Learning_rate : 이제까지는 임의의 값을 사용했음이 값을 크게 할 경우, 진동하거나 발산(overshooting)할 수 있음.아주 작은 값을 사용할 경우, 시간이 너무 많이 걸리고, local minimum에서 정지어떤 값이 좋은가는 특별한 법칙은 없다. 0.01로 시작하고, 나오는 cost 값에 따라서 줄이거나 늘리는 방법을 사용하면 된다.Data(X)의 전처리. (Gradient descent용)아래와 같이 x1, x2의 범위가 차이가 크면, 왜곡된 형태가 되어 데이터 처리가 힘들 수 있다.이 경우, 아래와 같이 중심을 원..

기타/WWW 2017.11.19

김성훈 딥러닝 6 - Softmax Regression

Lec 6-1 Softmax Regression 기본개념 https://www.youtube.com/watch?v=MFAnsx1y9ZI복습H(x) = WX 와 같이 Linear Regression으로부터 출발한다. 그러나, 이런 $WX$ 형태의 단점은, 출력이 $-\infty \lt H_L(x) \lt~\infty$ 이므로, 0이냐 1이냐를 고르는 문제에서는 적합하지 않다.그래서 $z = H_L (X)$라고 놓고, 이 값을 0부터 1로 압축할 수 있는 $g(z)$ 함수를 사용하여 해결한다. 이에 가장 적합한 $g(x)$는 sigmoid라고 하는 $g(z) = \frac {1}{1+e^{-z}}$ 이다. 이를 적용했을 때의 Hypothesis는 $H_R (X) = g(H_L (X))$ 가 된다.수식이 많아..

기타/WWW 2017.11.17

김성훈 딥러닝 5 - Logistic Classification의 가설함수 정의

Lec 05-1 - Logistic Classification의 가설함수 정의 https://www.youtube.com/watch?v=PIjno6paszYNeural network과 관계가 깊음.Binary Classification은 두가지 범주로 나누는 것 -> 0, 1 encodingSpam or HamShow or Hide주식 Buy/SellLinear Regression으로 가능한가?예를 들어 0.5 정도 이하면 Fail로 두면 될텐데, 50과 같은 값으로 인해, (대칭이 이루어지지 않아) 합격/불합격 선이 바뀌게 될 수 있다.또한 출력이 0 이하나 1 이상으로 나올 수 있다.... 별로 좋지 않다.그래서 Logistic Hypothesis 가 필요. (출력 범위가 0에서 1까지)아래와 같은 ..

기타/WWW 2017.11.16

김성훈 딥러닝 4 - 다변수(Multi-variable) Linear Regression

Lec 04 - 다변수(Multi-variable) Linear Regression https://www.youtube.com/watch?v=kPxpJY6fRkY복습선형 회귀분석을 위해서는 1) 가설(Hypothesis)를 세우고, 2) 비용(Cost/Loss) 함수를 만든 뒤, 3) Gradient descent 알고리듬을 적용한다.비용함수를 결정하고, 이를 최소로 줄이는 W, b를 찾는 것이 학습을 시키는 과정이다.단변수 회귀분석에서는, X=[x1, x2, .... , xn], Y=[y1, y2, ... , yn] 의 형태가 됨.다변수 회귀분석은X=[[x11, x12, .... , x1m],[x21, x22, .... , x2m], ..., [xn1, xn2, .... , xnm]], Y=[y1, y..

기타/WWW 2017.11.16

김성훈 딥러닝 3 - Linear Regression 의 cost 최소화 알고리듬

Lec 03 - Linear Regression 의 cost 최소화 알고리듬의 원리 https://www.youtube.com/watch?v=TxIVr-nk1so복습 : 선형회귀분석 모델의 가설(Hypothesis)과 비용함수(Cost function) 설명을 위해 H(x) = W(x)로 두고 진행W=1 일때의 cost(W)는?cost(W) = 1/3( (1x1 -1)^2 + (1x2 - 2)^2 + (1x3 -3)^2 ) =0W=0 일때의 cost?cost(W) = 1/3( (0x1 -1)^2 + (0x2 -2)^2 + (0x3 -3)^2 ) = 1/3 (1+4+9) = 4.67W=2 일때... cost = 4.67... 많은 값에 대해 cost()의 그래프를 그리면널리 사용되는 알고리듬이 Gradie..

기타/WWW 2017.11.15

김성훈 딥러닝 2 - Linear Regression의 가설(Hypothesis)과 비용(cost) 설명

Lec 02 - Linear Regression의 가설(Hypothesis)과 비용(cost) 설명 https://www.youtube.com/watch?v=Hax03rCn3UI시험성적 예측 (supervised learning) 선형 회귀분석x(hours), y(score) ->[[10,90], [9,80], [3,50], [2,30]] 의 경우.regression 모델로 training 시킴예(x,y) ->[[1,1], [2,2], [3,3]] 의 경우가설(Hypothesis) : linear regression.최적의 선을 찾는 것이 학습과정선형 회귀분석의 가설 : H(x) = Wx + b 에서, 가장 좋은 W와 b 를 찾아야 함.어떤 가설이 좋은지를 찾는다는 것은, 실제 데이터와, 가설 H(x)에..

기타/WWW 2017.11.15

김성훈 딥러닝 1 - 머신러닝 용어와 개념

Lec 00 - 머신/딥러닝 수업의 개요와 일정 https://www.youtube.com/watch?v=BS6O0zOGX4E알파고의 충격. Dr. Andrew Ng 님의 주장 - 머신러닝을 잘 이해하는 것이 슈퍼파워를 가지는 것.그렇지 못한 사람에 비해 앞서나갈 수 있다.누가 봐야 하나머신러닝에 대해 이해하고 싶은 사람수학이나 컴퓨터 공학에 대해 잘 모르는 사람기본적인 이해 만으로 머신러닝을 블랙박스처럼 사용하고 싶은 사람Tensorflow 와 Python을 사용하고 싶은 사람.목표머신러닝 알고리듬에 대한 기본적인 이해Linear regression, Logistic regression (Classification)Neural networks, Convolutional Neural Network, Re..

기타/WWW 2017.11.14

김성훈 Tensorflow

Lab1 : TensorFlow 기본 TensorFlow 설치- https://www.tensorflow.org/install/- Anaconda 설치후, Anaconda Prompt 를 실행한 후 나머지 실행- GPU 버전의 경우, 별도의 conda environment 를 설치한 후 실행>> import tensorflow as tfTensorFlow 실행 예제import tensorflow as tf node1 = tf.constant(3.0) node2 = tf.constant(4.0) node3 = tf.add(node1, node2)sess = tf.Session() print(sess.run([node1, node2])) print(sess.run(node3) TensorFlow 실행 단계-..

기타/WWW 2017.11.13

텍스트 파일을 이북(epub)으로 변환하기

저는 이북을 구글 플레이북으로 읽고 있습니다. 제가 2014년에 정리해 둔 글을 보면 제가 왜 구글 플레이북이 쓸만하다고 생각하는지를 아실 수 있는데, 그 이후에도 여러가지 유혹이 있었음에도 불구하고, 다른 이북 프로그램이 구지 필요하다고 생각하지 않고 잘 사용중에 있습니다. 다음은 구글 플레이북에서 사용할 수 있는 기능들입니다.오프라인에서 읽기페이지 북마크, 텍스트 강조표시, 메모 추가우아한 3D 페이지 회전휴대전화, 태블릿, 컴퓨터에서 북마크, 메모 및 읽기 위치 동기화도서 내 검색, 사전 사용, 지리 정보 찾기, 웹 검색결과 찾기, 페이지에 위키백과 표시 맞춤 텍스트 도서에 글꼴, 글꼴 크기, 레이아웃 선택주간, 야간, 세피아 읽기 모드 선택게시자가 허용하는 경우 텍스트 음성 변환으로 책 읽기PDF..

기타/스마트폰 2017.09.07

2017년 7월 네번째주 드론 뉴스

7/25한화시스템, 드론탐지 레이더 사업진출FLIR, 열화상 카메라 드론 키트 출시 인스파이어 활용드론시장 분석. 드론소프트웨어 회사 5.6억 달러 투자받음. 측히 vertical-focused companies.7/27두바이, 빠르면 2018년 3월부터 드론 배송 허용 예정7/28CICADA, 군집비행 가능한 일회용 초소형 드론 글라이더. 미해군연구소, 1개당 250 달러. 다양한 센서 장착. 목표지점 5미터 이내 착륙. 기상관측 등에 활용가능. SlingStudio - 다중 카메라 저작 솔루션. DJI 드론에 적용가능모스크바 기술연구소, 심장 제세동기 운송전용드론 개발7/29ASPRS, 드론 매핑 인증 10/24 실시예정

드론 쿼드콥터 2017.07.28

2017년 7월 세번째주 드론 뉴스

7/16 SKT-숨비, 드론 세이프 가드 선 봬 ‘정찰드론(V-100)’과 ‘인명구조드론(S-200)’ 中, 첨단 군용드론 CH-5 양산체제 구축···국제시장 진출 본격화 DRL(드론 레이싱 리그) 비행속도 163 mph = 262km/h 기네스 신기록세계 최소의 FrSky 수신기 IRangex RX803드론 construction7/17일본, 우주드론 인트볼 공개. ISS 사진촬영용. 12개의 마이크로 팬으로 구동0.5초만에 펴지는 드론용 낙하산.에스토니아 Eli - the Drone Nest, 10월부터 국경경비대와 함께 테스트 예정7/192026년까지 고도 150m 상공에 ‘드론 전용길’ 만든다 국토교통부 드론산업발전 기본계획 미 해군, 첨단 레이저무기 시스템, 이른바 로스(LaWS) 드론 격추 시..

드론 쿼드콥터 2017.07.22

2017년 7월 두번째주 드론 뉴스

7/10Kespry Drones, 보험 피해 조사 특화 드론. Cloud 분석7/11항우연, 10노트로 이동하는 함상에 틸트로터 드론 착륙 시험성공주리히 과학자, 드론에 인공지능, 비전 알고리듬으로 자율주행.MIT Senseable City Lab, 드론으로 벽화그리기 프로젝트 계획중2017 드론식별시스템 시장 보고서드론 시장 지도7/12 Rutgers, 교각 조사용 수중공중 겸용 드론 약 4.5kg스위스 Empa 연구소, 시계형 제스쳐 인식 드론 조종기 개발FlytBase, 지능형 드론을 위한 클라우드 API 공개. 드론의 역사 (From 1782)Measure, 태양전지판 검사 드론 서비스7/13 width=600 MIT, 초소형 자동운항 드론을 위한 초소형 저전력 컴퓨터 개발중 - NavionAir..

드론 쿼드콥터 2017.07.16

2017년 7월 첫째주 드론 뉴스

7/3 드로젠, 드론 원천기술 개발에 2년간 60억 투자 스택허니, 소움진동을 통해 드론 상태 확인하는 '드론 스팅' 개발 7/7 드론으로 2-3km 상공 대기변화 관측하여 토네이도를 1시간전 예보 영어기사/비디오 항공법 개정, 드론 야간/비가시 비행등을 특별승인시 허용 모듈식 프로그래머블 드론 Airblock, 일본 소프트뱅크과 파트너십체결, 14일부터 공급시작. 숫자로 보는 드론 : Source : Munich 재보험사 상용드론 보험제품 출시 2020년까지 270만대의 상업용 드론이 사용될 수 있음. (Source : FAA) 2015년-2025년까지 미국 경제에 820억 불 기여 2016년 전세계 상업용 드론 시장 성장률 86% 2025년까지 드론 시장에 의해 10만개의 새로운 일자리 창출 1270..

드론 쿼드콥터 2017.07.09

2017년 6월 네째주 드론 뉴스

6/26 엔비디아의 딥러닝 기술을 사용한 장애물 회피 + 경로탐색 기능에 대한 분석글 - 인공지능으로 무인기(UAV, 드론) 눈(Eye)의 진화가 빠르다. - 딥러닝 기반 무인 자율 비행 자이언트 드론, 수소연료 드론 비행시간 2시간으로 늘린다 미국 콜로라도 대학, 드론으로 실시간 온실가스 분석 6/27 MIT, 주행과 비행이 가능한 드론 개발. 주행/비행은 자동으로 최적으로 선택. 로봇신문 GreenSight, 골프장 잔디 관리용 드론. Kind of 정밀농업 로키드마틴, 캐나다에서 비시계 시설물 조사 비행 수행 6/28해수부, 적조 발생 예찰 위해 드론 투입 MIT, 5일간 비행가능한 엔진형 드론 개발. 태양전지 드론은 한계가 있어서. 오하이오 대학교 기상용 드론 좀더 자세한 내용. 여기도 DJI M..

드론 쿼드콥터 2017.06.30

귀환(RTL) 모드

귀환(RTL : Return To Launch) 모드는 콥터를 현재 위치로부터 이동시켜 Home 위치 위에 호버링하도록 하는 모드이다. RTL 모드의 행태는 여러가지 파라미터를 사용하여 제어할 수 있다. 이 페이지는 RTL 모드를 사용하는 방법 및 설정하는 방법을 설명한다. 개요 귀환(RTL) 모드가 선택되면 콥터는 Home 위치로 되돌아온다. 콥터는 먼저 RTL_ALT 로 지정한 높이만큼 상승한 후 Home으로 귀환한다. 현재의 높이가 RTL_ALT 보다 높다면 그 높이를 그대로 유지한 채 되돌아 온다. RTL_ALT의 기본값은 15m 이다. RTL은 GPS에 의존하는 이동이므로, 이 모드를 사용하기 전에 반드시 GPS가 고정되어 있어야 한다. 시동을 걸기전, APM의 파란색 LED가 고정되어 있는지 ..

드론 쿼드콥터 2017.06.29