전체보기 1868

XML 투토리얼 W3C

이 글은 W3C 의 XML 투토리얼에 있는 내용을 간략히 정리한 것입니다. 저는 현재 공간정보 표준들을 정리하는 중입니다. 지형지물목록이나 메타데이터 등의 많은 표준들이 XML 을 표준으로 사용하고 있기 때문에 어쩔 수 없이 이 글을 찾아보게 된겁니다. 그런데... XML이 정보를 담기위한 목적이라는 것은 어렴풋이 알고 있었지만, 이렇게 광범위하게 사용될 수 있을지는 몰랐네요. 아주 간략하게 어떤 기능이 있는지 어떻게 활용할 수 있는지에 대해서만 수박 겉핥기 식으로 훝어봤습니다만, 많이 도움이 될 것 같습니다. 이 글을 방문하신 분들도 저처럼 도움이 되시길 바랍니다. XML 이란 eXtensible Markup LanguageHTML과 비슷한 마크업 언어HTML은 표현. XML은 데이터 그 자체XML에서..

공간정보/표준 2017.12.24

김성훈 딥러닝 7 - 학습 rate, Overfitting, 일반화

Lec 07-1 학습 rate, Overfitting, 일반화(Regularization) https://www.youtube.com/watch?v=1jPjVoDV_uo Learning_rate : 이제까지는 임의의 값을 사용했음이 값을 크게 할 경우, 진동하거나 발산(overshooting)할 수 있음.아주 작은 값을 사용할 경우, 시간이 너무 많이 걸리고, local minimum에서 정지어떤 값이 좋은가는 특별한 법칙은 없다. 0.01로 시작하고, 나오는 cost 값에 따라서 줄이거나 늘리는 방법을 사용하면 된다.Data(X)의 전처리. (Gradient descent용)아래와 같이 x1, x2의 범위가 차이가 크면, 왜곡된 형태가 되어 데이터 처리가 힘들 수 있다.이 경우, 아래와 같이 중심을 원..

기타/WWW 2017.11.19

김성훈 딥러닝 6 - Softmax Regression

Lec 6-1 Softmax Regression 기본개념 https://www.youtube.com/watch?v=MFAnsx1y9ZI복습H(x) = WX 와 같이 Linear Regression으로부터 출발한다. 그러나, 이런 $WX$ 형태의 단점은, 출력이 $-\infty \lt H_L(x) \lt~\infty$ 이므로, 0이냐 1이냐를 고르는 문제에서는 적합하지 않다.그래서 $z = H_L (X)$라고 놓고, 이 값을 0부터 1로 압축할 수 있는 $g(z)$ 함수를 사용하여 해결한다. 이에 가장 적합한 $g(x)$는 sigmoid라고 하는 $g(z) = \frac {1}{1+e^{-z}}$ 이다. 이를 적용했을 때의 Hypothesis는 $H_R (X) = g(H_L (X))$ 가 된다.수식이 많아..

기타/WWW 2017.11.17

김성훈 딥러닝 5 - Logistic Classification의 가설함수 정의

Lec 05-1 - Logistic Classification의 가설함수 정의 https://www.youtube.com/watch?v=PIjno6paszYNeural network과 관계가 깊음.Binary Classification은 두가지 범주로 나누는 것 -> 0, 1 encodingSpam or HamShow or Hide주식 Buy/SellLinear Regression으로 가능한가?예를 들어 0.5 정도 이하면 Fail로 두면 될텐데, 50과 같은 값으로 인해, (대칭이 이루어지지 않아) 합격/불합격 선이 바뀌게 될 수 있다.또한 출력이 0 이하나 1 이상으로 나올 수 있다.... 별로 좋지 않다.그래서 Logistic Hypothesis 가 필요. (출력 범위가 0에서 1까지)아래와 같은 ..

기타/WWW 2017.11.16

김성훈 딥러닝 4 - 다변수(Multi-variable) Linear Regression

Lec 04 - 다변수(Multi-variable) Linear Regression https://www.youtube.com/watch?v=kPxpJY6fRkY복습선형 회귀분석을 위해서는 1) 가설(Hypothesis)를 세우고, 2) 비용(Cost/Loss) 함수를 만든 뒤, 3) Gradient descent 알고리듬을 적용한다.비용함수를 결정하고, 이를 최소로 줄이는 W, b를 찾는 것이 학습을 시키는 과정이다.단변수 회귀분석에서는, X=[x1, x2, .... , xn], Y=[y1, y2, ... , yn] 의 형태가 됨.다변수 회귀분석은X=[[x11, x12, .... , x1m],[x21, x22, .... , x2m], ..., [xn1, xn2, .... , xnm]], Y=[y1, y..

기타/WWW 2017.11.16

김성훈 딥러닝 3 - Linear Regression 의 cost 최소화 알고리듬

Lec 03 - Linear Regression 의 cost 최소화 알고리듬의 원리 https://www.youtube.com/watch?v=TxIVr-nk1so복습 : 선형회귀분석 모델의 가설(Hypothesis)과 비용함수(Cost function) 설명을 위해 H(x) = W(x)로 두고 진행W=1 일때의 cost(W)는?cost(W) = 1/3( (1x1 -1)^2 + (1x2 - 2)^2 + (1x3 -3)^2 ) =0W=0 일때의 cost?cost(W) = 1/3( (0x1 -1)^2 + (0x2 -2)^2 + (0x3 -3)^2 ) = 1/3 (1+4+9) = 4.67W=2 일때... cost = 4.67... 많은 값에 대해 cost()의 그래프를 그리면널리 사용되는 알고리듬이 Gradie..

기타/WWW 2017.11.15

김성훈 딥러닝 2 - Linear Regression의 가설(Hypothesis)과 비용(cost) 설명

Lec 02 - Linear Regression의 가설(Hypothesis)과 비용(cost) 설명 https://www.youtube.com/watch?v=Hax03rCn3UI시험성적 예측 (supervised learning) 선형 회귀분석x(hours), y(score) ->[[10,90], [9,80], [3,50], [2,30]] 의 경우.regression 모델로 training 시킴예(x,y) ->[[1,1], [2,2], [3,3]] 의 경우가설(Hypothesis) : linear regression.최적의 선을 찾는 것이 학습과정선형 회귀분석의 가설 : H(x) = Wx + b 에서, 가장 좋은 W와 b 를 찾아야 함.어떤 가설이 좋은지를 찾는다는 것은, 실제 데이터와, 가설 H(x)에..

기타/WWW 2017.11.15

김성훈 딥러닝 1 - 머신러닝 용어와 개념

Lec 00 - 머신/딥러닝 수업의 개요와 일정 https://www.youtube.com/watch?v=BS6O0zOGX4E알파고의 충격. Dr. Andrew Ng 님의 주장 - 머신러닝을 잘 이해하는 것이 슈퍼파워를 가지는 것.그렇지 못한 사람에 비해 앞서나갈 수 있다.누가 봐야 하나머신러닝에 대해 이해하고 싶은 사람수학이나 컴퓨터 공학에 대해 잘 모르는 사람기본적인 이해 만으로 머신러닝을 블랙박스처럼 사용하고 싶은 사람Tensorflow 와 Python을 사용하고 싶은 사람.목표머신러닝 알고리듬에 대한 기본적인 이해Linear regression, Logistic regression (Classification)Neural networks, Convolutional Neural Network, Re..

기타/WWW 2017.11.14

김성훈 Tensorflow

Lab1 : TensorFlow 기본 TensorFlow 설치- https://www.tensorflow.org/install/- Anaconda 설치후, Anaconda Prompt 를 실행한 후 나머지 실행- GPU 버전의 경우, 별도의 conda environment 를 설치한 후 실행>> import tensorflow as tfTensorFlow 실행 예제import tensorflow as tf node1 = tf.constant(3.0) node2 = tf.constant(4.0) node3 = tf.add(node1, node2)sess = tf.Session() print(sess.run([node1, node2])) print(sess.run(node3) TensorFlow 실행 단계-..

기타/WWW 2017.11.13

텍스트 파일을 이북(epub)으로 변환하기

저는 이북을 구글 플레이북으로 읽고 있습니다. 제가 2014년에 정리해 둔 글을 보면 제가 왜 구글 플레이북이 쓸만하다고 생각하는지를 아실 수 있는데, 그 이후에도 여러가지 유혹이 있었음에도 불구하고, 다른 이북 프로그램이 구지 필요하다고 생각하지 않고 잘 사용중에 있습니다. 다음은 구글 플레이북에서 사용할 수 있는 기능들입니다.오프라인에서 읽기페이지 북마크, 텍스트 강조표시, 메모 추가우아한 3D 페이지 회전휴대전화, 태블릿, 컴퓨터에서 북마크, 메모 및 읽기 위치 동기화도서 내 검색, 사전 사용, 지리 정보 찾기, 웹 검색결과 찾기, 페이지에 위키백과 표시 맞춤 텍스트 도서에 글꼴, 글꼴 크기, 레이아웃 선택주간, 야간, 세피아 읽기 모드 선택게시자가 허용하는 경우 텍스트 음성 변환으로 책 읽기PDF..

기타/스마트폰 2017.09.07